SUBJECT : MTS, 336 Instrumentation and Measurements

CREDIT HOURS	: 3-1
CONTACT HOURS	: 6 Hours per Week
TEXT BOOKS:	1. Process Control Instrumentation Technology by
	Curtis D. Johnson
	2. Electric Drives and their Control by R. M. Crowder
REFERENCE BOOKS:	Any book on Process Control and Instrumentation.
MODE OF TEACHING:	Lectures, Practicals and Demonstrations.

COURSE OBJECTIVES: One of the most daunting challenge in engineering education is to enable the students to integrate all they have learned – science, mathematics, engineering fundamentals – in the solution of a real-world engineering problems. Fundamentals of Industrial Controls and Instrumentation deal with the integrated and optimal design of a physical system, including sensors, actuators, electronic components, and the embedded digital control system. The integration is respect to both hardware components and information processing.

COURSE OUTCOMES: At the completion of the course the students will understand the following important concepts:

- 1. General understanding of instrumentation and measurement principles and terminologies.
- 2. Understand the operating principles of basic instrumentation circuits.
- 3. Comprehend various signal conditioning techniques: Analogue-to-digital and digital-to-analogue conversion.
- 4. Ability to undertake analogue-to-digital and digital-to-analogue conversion using microcontrollers/PCs.
- 5. Understand/use various sensors: Temperature, displacement & position, force, pressure, strain, vibration, velocity, flow rate.
- 6. Understand various types of actuators and use them practically.
- 7. Comprehend different experimental techniques: Impulse inputs, ramp inputs and ssinusoidal & swept sine testing

TOPICS COVERED:

1. Introduction: Measurement terminologies (resolution, sensitivity, accuracy, precision & uncertainty

2. The Industrial Control Environment

- a. Introduction to process control
- b. Control loop characteristics
- 3. Basic Instrumentation
 - a. Principles of different measurement techniques
 - b. Bridge circuits for measurement of resistance, inductance and capacitance
 - c. Microprocessor based instrumentation circuits.
- 4. Signal Conditioning
 - a. Analogue signal conditioning
 - b. Instrumentation amplifiers
 - c. Analogue filters
 - d. Analogue-to-Digital converters
 - e. Digital-to-Analogue converters
- 5. Sensors
 - a. Temperature measurement (Thermocouples, RTDs, Thermisters)
 - b. Displacement and Position measurement (Digital encoders, shaft encoders, absolute and relative encoders, linear encoders)
 - c. Sensors for force, pressure, strain, vibration, velocity, flow rates etc.
- 6. Actuators
 - a. Various types of electrical, pneumatic and hydraulic actuators
 - b. Brushless DC motors
 - c. Stepper motors and servos
- 7. Experimental Techniques
 - a. Impulse Inputs
 - b. Ramp Inputs
 - c. Sinusoidal testing and swept sine testing

List of Experiments

Week	Details
1-2	Lab 1: Introduction and overview to Software
	Exp 1: Study Features of the software LabView
	Exp 2: Integrating C codes with the LabView user interface
	Q&A Session
3-4	Lab 2: Serial Communication
	Exp 1: Communication between microcontroller card and PC
	Exp 2: Communicating with microcontroller using LabView
	Q&A Session

5-6	Lab 3: LabView Experiments
	 Exp 1: Using Digital I/O point status in LabView
	 Exp 2: Sending Digital commands through LabView
	Q&A Session
7-8	Lab 4: Using D/A and A/D Converters
	 Exp 1: A/D conversion using microcontroller and PC
	Exp 2: D/A conversion using microcontroller and PC
	Q&A Session
9-10	Lab 5: Switches
	Exp 1: Using Transistor as Switch
	Exp 2: Using Opto-Coupler
	Exp 3: Using IR Switch
	Exp 4: Using Optical Switch
	Q&A Session
11-12	Lab 6: Motor Control
	Exp 1: Design Shaft Encoder
	Exp 2: Speed and Direction Control of motor using H-Bridge
	Q&A Session
13-14	Lab 7: Project 1 and Project 2
	Q&A Session